
Jacobsen Declaration Exhibit AK

TM

KAM

KAM

Matt Katzer
Page 1

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools® Interface
Programming in Visual Basic,

Java and C/C++

Matt Katzer
KAM Industries
Portland, Or.

TM

KAM

KAM

Matt Katzer
Page 2

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Agenda

• NMRA software application model
• Train Tools® Interface architecture

– Key concepts and terms
– Execution model

• Train Tools® Command set
• Writing an application (VB, Java, C/C++)

– Using proposed NMRA API (Train Tools® interface) in VB

– Using proposed NMRA API (Train Tools® interface) in C++

• Questions/Answers

TM

KAM

KAM

Matt Katzer
Page 3

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Why are you here

• Clinic will provide a status update on the
NMRA software application model

• Clinic will review the TrainTools® API
submitted to the NMRA DCC working group
by KAM Industries.

• Clinic will focus on API architecture
– we will talk Application programming

– API design tradeoffs
– programming languages

– implementation example programs (C++ and VB)

• What are your expectations?

TM

KAM

KAM

Matt Katzer
Page 4

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Legal Disclaimer

• KAM Industries has submitted the Trains
Tools® Application Programming Interface
to the NMRA DCC Working group for RP
approval under the following conditions;

– If the API is ratified as a Reference Practice(RP) KAM
will transfer copyright of the document to the NMRA,
otherwise the document and API’s remain KAM’s
copyrighted property.

– If the API is transferred to the NMRA, KAM retains
rights to publish and use the RP Train Tools API
document in their product, website and documentation
as appropriate without any license fees or restrictions.

TM

KAM

KAM

Matt Katzer
Page 5

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Status of NMRA Application
S/W Architecture Model

• There are four parts to the NMRA DCC
software architecture model

Protocol Driver
O/S Device Driver

Application Programming Interface
Object Architecture

Rosa Proposal by Tannersoft (7/97)

Katzer/Rice Draft Protocol Specification (7/9

KAM Industries Submission (7/98)
specification located on Http://www.kamind.com

no activity

TM

KAM

KAM

Matt Katzer
Page 6

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Status of NMRA Application
S/W Architecture Model (cont.)

• Protocol Level
– hardware Products

» North Coast Engineering, Wangrow Electronics

» Easy DCC
» ZTC systems

– Software drivers for command station hardware
» WinLok, Engine Commander®, Railroad Company

Tayden Design

– Generic draft protocol driver
» Engine Commander®

TM

KAM

KAM

Matt Katzer
Page 7

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Status of NMRA Application
S/W Architecture Model (cont.)
• Device Driver Level

» no activity

• Application Interface Level
– hardware Products

» not applicable to hardware

– Microsoft COM/DCOM implementation of API
» Engine Commander®

» Computer Dispatcher® (March 98)

» Generic type library available for linking with
application written in Java, Visual Basic, C/C++

– CORBA support
» no activity

TM

KAM

KAM

Matt Katzer
Page 8

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Status of NMRA Application
S/W Architecture Model (cont.)

• Object level
– Rosa application model proposed (update on

http://www.digi-toys.com)
– hardware Products

» not applicable to hardware

– Software products
» Engine Commander® and Train Server® conforms in

architecture model

– COM support
» no activity

– CORBA support
» no activity

TM

KAM

KAM

Matt Katzer
Page 9

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Agenda

• NMRA software application model
• Train Tools® Interface architecture

– Environment issues
– Key concepts and terms
– Execution model

• Train Tools® Command structure
• Writing an application (VB, Java, C/C++)

– Using proposed NMRA API (Train Tools® interface) in VB

– Using proposed NMRA API (Train Tools® interface) in C++

• Questions/Answers

TM

KAM

KAM

Matt Katzer
Page 10

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Railroad Environment
• Must have NMRA DCC compatible engines

– Pick a DCC supplier based on current required for your locomotive

– By 2000, all locomotives in a price range above $100 will most likely
have a decoder integrated into the unit

• Command station equipment
– Expect a hybrid; plan for multiple command stations on layout
– Model expected; one for programming the other for command and

control

Personal Computer

Multiple serial channel integration into DCC

Lenz

EasyDCC

Digitrax

NCE
Wangrow

Command station interface
MS-100, LI-100,

Serial port

Command Station
EasyDCC, Lenz, Digitrax

Marlin, North Coast Engineering

Control(com1)

Programming or Control(com2)

TM

KAM

KAM

Matt Katzer
Page 11

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

• Train Tools® API was developed to address
an internal needs at KAM

– KAM needed away to control software costs and improve
schedules

» non standard computer interfaces by command stations are costly
to support

» every one had their own architecture

– Standardization was needed to address product development
» API was required so KAM could decouple the GUI (client) from the

backend (server) application

» Needed to implement a Internet backbone

» Needed a way to support Windows 95/98 and NT 4.0/5.0
distributed architecture

» Needed an standard interface for a family of software products

Driving Force behind the API...

TM

KAM

KAM

Matt Katzer
Page 12

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Driving force (cont.)

• We needed an API that’s was language friendly
– Need flexibility to implement Java RNI if required

– Needed support for Visual Basic
– Needed support for C/C++

– Needed support for our web servers via distributed Common
Object Model (DCOM)

• Our next generation software”Computer
Dispatcher®” was an object driven model which
required integrated network support.

– We needed an API that delivered functionality and implementation
performance.

– The API had to support COM and CORBA standards

– The API ad to have source level compatibility at the minimum

• But the greatest factor for KAM was prototype control...

TM

KAM

KAM

Matt Katzer
Page 13

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Computer Dispatcher®

• The driving force for KAM was to build an
infrastructure so we could support
prototype operation….

ABS

ABS

ABS

ABS

1N

2N 1S

2S

21 12

21

N W 2 1
ENT PO SD LPO LIN

A
LIN
B

MC

4 9 1

CTC Panel View in Computer Dispatcher

Computer Dispatchers
 Model view of an active element
with full Entry/Exit (route) control

Active Objects

TM

KAM

KAM

Matt Katzer
Page 14

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

API Architecture

• API is a combination of a property/method
model; with an execution framework

– Objects are not passed in the API; rather states are passed

– The state model reduces overhead on clients and improves
the ability to port the API to different architecture
(marshalling is expensive in software)

– States are set; and execution is passed

» DccEngSetFunction(…..)

» DccEngGetSpeed(…)
» DccCommand(ObjectId)

• The API was designed to support prototype
operations

Set something(,,)

Get something(,,)

Train

TM

KAM

KAM

Matt Katzer
Page 15

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Architecture (cont.)

• API is built on the following concepts
– Devices are logical devices. There is a mapping between

logical to physical
» DccPortGetMaxLogPorts(lMaxLogical)
» PortGetMaxPhysical(lMaxPhysical, lMaxSerial, lMaxParallel)

» DccPortGetName(iComPort, strComPort)

» DccMiscGetControllerName(iController, strCntrl)
» DccPortSetConfig(iLogicalPort, 0, iPortRetrans, 0)

» DccPortSetMapController(iLogicalPort, iController, iPhysicalPort)

– Abstraction for the client was the key.
» Client does not need configuration ability

» Client only needs to know how map a logical to a physical device

» The configuration extension was added to accommodate new
manufactures equipment using a standard driver.

TM

KAM

KAM

Matt Katzer
Page 16

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

DCC Cooki e

• DCC addresses are integrated in an object
– Objects have a reference and can be translated

– The object must be complete enough to use the API with as
little information as possible

– Hence all information to control accessories or locomotives
require and object as a reference

» This allows developers to implement the sever as an
object store independent of the Operating System
architecture.

» The objects then become a “DccCookie”.
• DccCookie encapsulate programming ports, command

ports, decoder class and DCC addresss

• The DCC Cookie becomes the reference token for
system calls and can easily be validated

TM

KAM

KAM

Matt Katzer
Page 17

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Architecture (cont.)

• Abstraction also extends to decoders
– we needed a model that allowed flexibility and growth

» Decoder classes were created to group decoders.

» Each decoder class supports multiple decoder models
• Classes are “Loco”, “Switch”,”Sensor”

• Models are DH84, K87, LS110, Chub Detector1

» A set of decoder management fucntions were added to
support applciaiton development

• DccDecoderGetMaxModels(…)

• DccDecoderGetModelName(…)

• DccDecoderGetMaxAddress(…)
• DccDecoderGetMfgName(…)

• DccDecoderGetPowerMode(…)

• DccDecoderGetModelFacility(…)

• DccDecoderSetModelToObject(…)

– Objective was abstraction of the Interface

TM

KAM

KAM

Matt Katzer
Page 18

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

 Engine Commander®
• Built on a modular philosophy

– Implements all of the API’s
– Simple interface, but uses abstraction to reduce complexity of task
– An accessory through switches..
– A throttle run trains..
– A clock tells time

TM

KAM

KAM

Matt Katzer
Page 19

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Agenda

• NMRA software application model
• Train Tools® Interface architecture

– Environment issues
– Key concepts and terms
– Execution model

• Train Tools® Command Summary
• Writing an application (VB, Java, C/C++)

– Using proposed NMRA API (Train Tools® interface) in VB

– Using proposed NMRA API (Train Tools® interface) in C++

• Questions/Answers

TM

KAM

KAM

Matt Katzer
Page 20

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

API command summary

• API Command classes
– CV
– Engine
– Consist
– Accessory
– Command
– Programming
– Communications
– Command
– Decoder
– Cab
– Feedback
– Callback methods

These are the major classes of
commands needed in most DCC

software applications.

 We have implemented
 Engine Commander®

 and are in the development
phase of Computer Dispatcher®

TM

KAM

KAM

Matt Katzer
Page 21

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

•Train Tools API

• Fucntions
• DccCVGetValue();

DccCVSetValue();
DccCVGetStatus();
DccCVSetStatus();
DccCVGetName();
DccCVGetMaxRegister();
DccCVGetMinRegister();

• Accessory Commands
DccAccGetFunction();
DccAccSetFunction();
DccAccGetFunctionAll();
DccAccSetFunctionAll();
DccAccGetFunctionMax();
DccAccGetName();
DccAccSetName();
DccAccGetFunctionName();
DccAccSetFunctionName();

TM

KAM

KAM

Matt Katzer
Page 22

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools API (cont.)
• Engine

DccEngGetSpeed();
DccEngSetSpeed();
DccEngGetFunction();
DccEngSetFunction();
DccEngGetFunctionMax();
DccEngGetName();
DccEngSetName();
DccEngGetFunctionName();
DccEngSetFunctionName();
DccEngGetSpeedSteps();
DccEngSetSpeedSteps();

• Consist
DccEngConsistGetMax();
DccEngConsistSetParent();
DccEngConsistAddUnit();
DccEngConsistRemoveUnit();
DccEngConsistGetParent();

TM

KAM

KAM

Matt Katzer
Page 23

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools API(cont.)

• Command Station
DccOprGetStationStatus();
DccOprTurnOnStation();
DccOprStartStation();
DccOprClearStation();
DccOprStopStation();
DccOprPowerOn();
DccOprPowerOff();
DccOprHardReset();
DccOprEmergencyStop();

• Programming
DccProgramGetStatus();
DccProgramSetMode();
DccProgramGetMode();
DccProgramWriteCV();
DccProgramReadCV();
DccProgramWriteDecoderToDataBase();
DccProgramReadDecoderFromDataBase();

TM

KAM

KAM

Matt Katzer
Page 24

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools API(cont.)
• Communications

DccProgramGetStatus();
DccProgramSetMode();
DccProgramGetMode();
DccProgramWriteCV();
DccProgramReadCV();
DccProgramWriteDecoderToDataBase();
DccProgramReadDecoderFromDataBase();

• Command
DccCmdCommand();
DccCmdConnect();
DccCmdDisConnect();

• Cab
DccCabWriteMessage();
DccCabReadMessage();
DccCabSetDccObject();
DccCabGetDccObject();
DccCabAdd();
DccCabDelete();
DccCabTranslate();
DccCabLookupDccObject();

TM

KAM

KAM

Matt Katzer
Page 25

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools API(cont.)

• Decoder
DccDecoderGetMaxModels();
DccDecoderGetModelName();
DccDecoderGetMaxAddress();
DccDecoderCheckAddrInUse();
DccDecoderGetMfgName();
DccDecoderGetPowerMode();
DccDecoderAddAddr()
DccDecoderGetModelFacility()
DccDecoderReconnectObject();
DccDecoderChangeAddress()
DccDecoderTranslate()
DccDecoderSetModelToObject()
DccDecoderGetMaxSpeed();
DccDecoderGetObjectCount()
DccDecoderGetObjectAtIndex()
DccDecoderDel();
DccDecoderGetErrorState()

TM

KAM

KAM

Matt Katzer
Page 26

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools API(cont.)

• Feedback
DccFeedbackErrorMessage();
DccFeedbackAccessoryBit();
DccFeedbackAccessoryAll();
DccFeedbackEngineResponse();
DccFeedbackCV();
DccFeedbackMessagesCab();
DccFeedbackMisc();

• Callbacks
DccResponseErrorMessage();
DccResponseAccessoryBit();
DccResponseAccessoryAll();
DccResponseEngineResponse();
DccResponseCV();
DccResponseCabMessage();
DccResponseMisc();

TM

KAM

KAM

Matt Katzer
Page 27

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Train Tools Api(cont.)

• Time
DccMiscGetClockTime();
DccMiscSetClockTime();

• Command Station
DccMiscGetControllerName();
DccMiscGetControllerNameAtPort();
DccMiscGetCommandStationIndex();
DccMiscMaxControllerID();
DccMiscSetCommandStationValue();
DccMiscGetCommandStationValue();
DccMiscGetControllerFacility();

• Misc
DccMiscGetErrorMsg ();
DccMiscGetApiName();
DccMiscGetInterfaceVersion();
DccMiscSaveData();

TM

KAM

KAM

Matt Katzer
Page 28

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Agenda

• NMRA software application model
• Train Tools® Interface architecture

– Environment issues
– Key concepts and terms
– Execution model

• Train Tools® Command Summary
• Writing an application (VB, Java, C/C++)

– Using proposed NMRA API (Train Tools® interface) in VB

– Using proposed NMRA API (Train Tools® interface) in C++

• Questions/Answers

TM

KAM

KAM

Matt Katzer
Page 29

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Visual Basic Throttle?

• How is this Visual Basic application built?

• Lets look at how you program it

TM

KAM

KAM

Matt Katzer
Page 30

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Visual Basic 5 Train Tools®
• First step is to add the object reference

This is the key for all
programming

languages
We crete an object

reference

TM

KAM

KAM

Matt Katzer
Page 31

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Visual Basic 5 (cont.)

• next,
– Write the subroutine to control the loco

TM

KAM

KAM

Matt Katzer
Page 32

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Lets look at a C++ model
// Identify the interface of the object that we want to use...

MULTI_QI qi = {&IID_IEngComIfc, NULL, 0};

hr = CoCreateInstanceEx(CLSID_EngComIfc, NULL,

 CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
 pServerInfo, 1, &qi);

 // add the security call at this point for compatibility for DCOM objects

 //CoInitializeSecurity

// Now make the com conenction for the interface
if (SUCCEEDED(qi.hr))

{

// Now get the remote TrainTools interface

 short sError;

m_pEngIfc = (IEngComIfc*)qi.pItf;
GetVersion(&m_csIfcVersion);

m_pEngIfc->DccPortGetMaxLogPorts(&m_iMaxLogicalPorts, &sError);

m_pEngIfc->DccPortGetMaxPhysical(&m_iMaxPhysicalPorts, &m_iMaxSerialPorts, &m_iMaxParallelPorts, &sError);

m_pEngIfc->DccMiscMaxControllerID(&m_iMaxControlerId, &sError);

A little more complex, but very similar to VB

This is the key for all
programming

languages
We crete an object

reference

TM

KAM

KAM

Matt Katzer
Page 33

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

C++ cont.
/*
 * NAME
* DecoderGetModelFromCookie() - Get controller facilities.
* RETURN VALUE
* iModel - Decoder model ID.
 *
 * DESCRIPTION
* DecoderGetModelFromCookie() gets the decoder model ID.
 */

int TInterfaceDevice::DecoderGetModelFromCookie(long lCookie) const
{

TRACE("TInterfaceDevice::DecoderGetModelFromCookie(0x%08lx) - Entering\n",lCookie);
 short iError;
 int iLogCmdPort, iLogProgPort, iDCCAddr, iDecoderClass, iDecoderModel;

m_pEngIfc->DccDecoderTranslate(lCookie, &iLogCmdPort, &iLogProgPort, &iDCCAddr,
 &iDecoderClass, &iDecoderModel, &iError);

TRACE("TInterfaceDevice::DecoderGetModelFromCookie(0x%08lx) - Exiting: (%X)- Error\n", lCookie, iError);
return (iDecoderModel);

}

Easily supported in multiple languages

TM

KAM

KAM

Matt Katzer
Page 34

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Where to from here?

• Download the API from our web page
• Visit KAM at the Train show and pick up a

free demo CD (beta product) (booth 240-250)

• The Train Tools® API is real
– EngineCommander is designed around it
– Computer Dispatcher development is in process

• Sends us your feedback to
– TrainTools@kam.rain.com
– We want to hear your suggestions and

recommendations

TM

KAM

KAM

Matt Katzer
Page 35

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

http://www.kamind.com

TM

KAM

KAM

Matt Katzer
Page 36

Kansas City, Mo
NMRA 8/21/98
Copyright 1998 KAM Industries
all rights reserved

Questions ?

Matt Katzer
email: mkatzer@kam.rain.com
web: http://kam.rain.com
home: 503-291-1221

Computer Dispatcher®, Engine Commander®, The Conductor®, Train Server®, kamind®,
and Train Tools® are registered trademarks of KAM Industries.
Other brands, products, trademarks or registered trademarks are properties of their respective holders.

