Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 1 of 12

ML Iab Real-11me Digrat Model Railroad Project rage 1 ot >

IML lab Real-Time Digital Model Railroad
Project

Proceedings of the IEEE Conference on Real-Time Applications
May 13-14, 1993

New York, N.Y.

Sponsored by: IEEE Computer Society, Office of Naval
Research, Honeywell Incorporated and Naval Surface Warfare
Center.

A Real-Time Software Controller for a Digital Model Railroad
System*

by

Roger W. Webster, Ph.D.

David Hess

Intelligent Machines Laboratory
Department of Computer Science
Millersville University
Millersville, PA USA 17551
(717) 872-3539

email: webster@ecs.millersv.edu
Abstract

This paper describes a real-time software controller for a digital model railroad.

- Primitives of fork, pipe, and signal are used te perform interprocess communicatic
exacuting tasks, (1) a Scauning Task, (Z) a Scheduler and Collision Aveoidance task,
Interface (GUI) task. The software engineering objective of this real-time system i
digital locomotives each rumning on the came track lavout while at the mame time al
scheduling system to "run" the trains. The control software continuously monitors r
of each train’s location and direction. and ig constantly performing collision avoi
digitally encoded with a chipset that is addressable, therefore mescy block wiring
unnecessary. Each digital locomotive and digital turnout switch responds L0 Ccompute
address. ‘

I. Introduction.

In this railroad lavout theres are siw digital turnout awitches, Lwo digital ilocomot
to manage and control (Figure L). The objective is to move the traina around the tr
to the scheduling algorithm witheut collision. The fifteen reed contact senscrs are
around rhe track (Figure 2). Magnets are attached to each locomotive which trip ree
implanted in the track. This configuration provides an interesting, experimental pl

28 3o9d SALVIONSSY ANIWYA 111 @gg g 98BC/pPB/SAa

Tuesday, May 09, 2006 (2).max

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 2 of 12

t

LviL Jab Real-1'ime Ligital Model Railroad kroject Page 2 o1)

real-time systems for undergraduates in Computer Science and Computer Engineering.
while many undergraduate courses in Real-Time Systems acquaint students with the fu

* This work partially funded by the National Science Foundation (NSF) under Grant X\
Miliersville University and by the Faculty Grants Committee of Millersville Univers

in real-time computing, many do not provide adeguate laboratory platforms to exerci
to build physical real-time systems(2]. Theoretical modelling and graphies simulaci
frustrating and spasmodic problems endemic in actual real-time systems. This labora
to utilize and exercise their knowledge of mathematics, phyeieces, engineaxing, compu
programming .

II. Equipment, Hardware and Software.

The computer contrailer is a SIIN SPARC workstation connected to a CUN 4/320 file s«
SUN IPC workstation has 16 MB memory and a 207 ME Hard Digk drive. The Marklin digi
used to interface the SUN computer to the track as depicted in Figure 2. The Markli
interconnacted gomponente: a Central Unit, Computer Interface, Keyboanrod Turnout Con
Module (TDM), Contrxeol 80f, and a Transformer. 3ll Marklin modules or components plu
architecture between components.

The Central Unit ig the CPU of the Marklin system. The Ceublral Unit receives COMMAn
that control turnouts and locomotivesi3]. The Central Unit overlays each command on
sending a signal to the track where it is received by the specific decoder for whic
€82 decoder chip in each locomotive uvr Lhe K87 turnout decoder for Switeh tracks}).

nmodule (TDM) is an encoder which translates the incoming signals from the reed cont
that the digital system can then use. The Control 80f module is simply & manual cc
and direction of auy digital locomotive. he KB/ Digital Turnout control module can
turnouts. Multiple K87's can be connected in series. The K87 will respond to track

Marklin Keyboard component or the Computex Interface module.

[x]

Figure 1. Photo of Digital Railrocad System.

AUN 8PARC SUN Spare Sparcstation 4/330
Bpury10-Zx I NF& Fller Server
Workstation Workstation | 72 MB Memory
e
Ethernet = Etharnet Network of SUNs
L]
i,.«" RB8232 lak | IR
\ Marklin Digital Raittoad Interface
“\._._ emputer, turnout Centra) Control
‘"’Ennvhe- sontral Uadt C!}{ H 3"{30(Tronstormar
e ey
: T e baa han s e <7 1
SWa 4 TD2 = Track Detection HModule
Ll

- ¥
1 3
T\g\sm 13

[«]]
N

\‘ SW
15

£a 3ovd S3LYIONSSY ANIWA 1T @giBc 98a8c/ro/sa
Tuesday, May 09, 2006 (2).max

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 3 of 12

LviL. 1ab Keal-1'une Ligital vioael Kauroad rroject Fage 3 ot >

N -

Figure 2. Hardware and Track Layout.
Reed contacts are mimhered 1 through 15.
Digital turnouts are numbered SWl through SW6.

The Computer Interface module ie the link between the SUN IPC workstatbionr aud Lhe
system. Using an RS232 2600 baud serial interface, all the functions of the Control
Turniout module can be sent as commands from the computer to the interface module. I
command can be sent to the lulerface to query the 1uM information which specifies w
tripped. In all, up to 80 locomotives, 256 turnout switches, and 496 reed sensors ¢
the computer interface.

The suftware 15 written enrirely in ‘C'. The 'C' language wac chosen as the real-
reasons which are outlined in [4) and [5]. The SUN Developer's Guide was used to ge
Graphic¢ Users Intexface (GUI).

III. Device Driver Interface to Marklin System

A device driver was written in 'C' (TRAIN.C) containing the low level commands frc
Marklin Computer Interface hardware wvia RS232. Functions such TRATNSSTART () and TR2
written to initialige and shut down the Marklin system. The function TRAINSSPEED (tx
the addregsable speed command, thus each train could be separately controlled. TRAJI
stopped the train train-number, but not the other trains running. TRATINSSWTTOH (gwit
straight) would switch the digital turnout to either it's stralght or curved positi
rreversed the train. -
The function call TRAINSGET-TDM(&tdml, &tdm2) returns the two hytez sent by the Max
Moctule. The first byte, tdml, contains the sensor information for the first 8 sensc
sensors 9 through 16. A magnet on the train will trip the reed zensor when it cross
been tripped. The device latches the bit until a computey command read, which reset
It is interesting to note that a glow train could trip the reed sensor twice. Thus
when the sensor is tripped, read by a computer read command (inquiry), reset to 0,
before the train has completely bypassed the sensox. Thisz is taken ceare wf in the =

reed sensor data. -
~ \QNQM’

IV. sSoftware Controller / Concurrent Tasking.

The real-time software controller consists of three separately executing concurrent
. {2) a Scheduler and Collision Aveidance task, and (3) a Graphical User Interface (c
preferas to call tasks ~ procesases, in this paper the terms will be usged interchange
Graphical User Interface (GQUI) task which allews the user to manually control the c
SUN workstation (Figure 4). This task allows the user to: stop. reverse, and chan
addresa) . Also, the user can switch any of the computer connected turnouts on the 1
the control mode and unrestricted mode. Tn control mode the user's reguests are sen
the Scheduler Task to determine the viability of the regquest. Thus, the user e not
would cause a crash. Lf g0, the regquest is blocked. In unrestricted mode, the user:
Marklin digital system without collision avoidance checks and therefore could czuse
The parent process spawng two child processes, the Scan task and the Scheduler tacgk
the two children via a pipe called Control-Pipe. Both c¢hildren have the ability to
separate conditions. The Scan task will read the control pipe if the GUI task is i
1ts user commands directly to the Scan tasgk. The Scheduler task will read the con
contrxol mode, in this way user commands initiated from the GUI task will be sent tc

viability then, if viable, sent via the Command-Pipe to the Scan tasgk.
The Scan task has twoe jobes and continuously luups executing both jobs ence for eack
job is to collect and decode the current reed

T, e 1es 1Y . e - ans -

ba 39%d S3ILYIDOSSY ANIWWM T11 BE@Z 9BBZ/pB/GB
Tuesday, May 09, 2006 (2).max

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 4 of 12

1Mi lab Keal-fime Ligital Model Kailroad Project Fage 4 o1 >

| o= |

Ul
(parent process)
Craphiexl User Inkerfnae

{unrestrieted mode] [control mode}

T P Task
s?;% < ComriTin SCHEDULER
{child process) Gommand-Fige (child process)
- ftetus-Pipe Pﬁ‘h Phnm:bg and
Interface to Railrosd Collision Avoidance
Sensor-Pipa

Figure 3. Task Map and Interprocess Communication Piping.

Figure 4. Graphic User Interface (GUI) fox Manual Control of the Svstem.

contact sensgor information through the Track Detection
Mudule (TDM) . The decoded information ig then sent to the Scheduler task for proces

pipe. The Scan task performs thias by calling the device driver function TRAINSGET-T
returns the two bytes sent by the Marklin Track Detection Module. The first bvte, t
information for the first B8 sensors on the track. Tdm2 contains sensors 9 through 1
returned in tdml and tdm2 is accomplished by combining these two bytes into one wor
comparing to 0x8000 in a for loop. A bit is on if the sensor has been trippned. If t
sensors trripped., at least one of the trains has crossed more than two sensors since
the procegs is executing too slowly te monitor the trains properly or that =ome har
exception condition arises, the task immediately issues = TRAINSHALT () command. Thi

system.
The zecond job of the Bcan task is to relay commands to the Marklin Digital Interfa

only task which accesses the RS232 port connecting the SUN Sparcftation to the Mark
Scan task will either accept commands from the Graphical Users Interface task (par
Scheduler task. If the GUI task is in control mode, then the Scan task will recelive
which gets its commands from the GIUT rask (user initiated). If the GUI Lask is in u
will send the user initiated commands directly to the Scan task without any collisi
commands are sent through the pipe interprocess communication facility in Unix as s
contains command @ade and the lowexr nibble contains additional information, when re
t¥ain gpeed adjustment for example.
The Scheduler tagk is responsible for all control of the system. This task intercer
and determines if cmrrent conditiona on the train layout will allow the command to
causing a collision or derailment), If so, the cammand is relayed to the Scan task
. Pipe, otherwise the command is blocked from the Marklin system. The Scheduler task
information for each txain such as: localion, speed, direction, and current zone or
tripped, the sensor value is used to index a lookup table which contains the previe
track layout. In this manner it is poesible to monitor the Lrains withour addressak
xeced contact will signal the fact that a train {a magnet) hags crossed the track. Hc
which train crossed, just that come train (with a magnet) has crossed. Thus, trippi
event. Ambiguity can arise due the fact that tripping a aontract is not an address
figures out which train it probabalistically is given the monitoring information it
For example, suppose the current sensor read ie 8 and the direction is (. The previ
ia compaxed to the location of each train in rhe data strueture. If a mateh is fuun
the location field for that train. If no match is found the asvstem issues a TRAINSH
the system shuts down. In this manner the Scheduler always knows where each train i
allowed to lag behind.
The Scheduler task contains the code to detect c¢ollisiens. When one train approache
Scheduler either issues a slow down command or a TRAINGSTOP (train-address) to the t
how imminent the collimion is. The controller doas not want to stop a train unless
imminent situations the Scheduler may issue both a train siow down command to the r

LI 1 rer 21 . o~ . e

58 3vYd S3IVIDONSSY ANIWTH 111
Tuesday, May 09, 2006 (2).max

BE B2 90BZ/b0/50

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 5 of 12
. LvIL lab Keal~1'ime Digiial vMiodel Ralroad Froject Page > 015

speed up to the front locomotiwve. Upon each train arriving at a switch, the Schedu
switch, and il so, issues the command to the Mark!in system.

This paper has described the work-in-progress of a real-time software controller fc
control software does accomplish its objective of moving the digital logomotives a
according to the scheduling algerithm without collision. Using the Unix real-time ¢
to perform interprocess communication among thyxee concurrently executing tasks, thi
control oI multiple digital locomotives each running on the same track layous while
computerized scheduling syatem to 'run" the trains. The control software continuous
to keep track of each train's location and direction., and is constantly performing

The project was initiated to provide an interesting, expeximental platform for the

systems for undergraduates in Computer Science and Computer Engineering. While many
Real-Time Systems acdquaint students with the fundamental topics in real-time comput
adequate labeoratory platforms to exercise the software skills necessary to build ac
modelling and graphics simulations simply do not manifest the frustrating and spaso
physical real-time systems. This labaratory platform roeguires students to utilize o
mathematics, physics, engineering, computer science, and real-time programming, A wv
system running is available from the authorsg,

Arknowledgesment

This work was partially funded by the National Science Foundation under Grant MNo. U
Millersville University and the Faculty Grants program of Millersville University.

Dx. Josmaph Meiex for his cxpextise on model ratlroading and for helping us get stax
undergraduate regsearch students: Bruce Waltexs, Chris Coble, Jason Eaby, and David
trade mark of SUN Microsystems, Inc., Unix is a trade mark of AT&T Bell Laborate

References

(1] Webhster, Roger and Paul Roszea, "A Workslatlon Laboratory to Improve Undergraduat
National Science Foundation Instrumentation and Laboratoxy Improvement Program, Gra
University, Millersville, Pennsylvania, USA.

[2]) John W. McCormick, “A Model Railread for Ada and Software Engineering", Commu
1892, vol. 35, No. 11, pp. 68-70.

{3] Catherall, Thomas, "2-Rail Digital pc", wMarklin Digital SIG Newsletter, Vol.
199C, pps 1-8.

(4] Ripps, David L. An Implementatien Guide to Real-Time Programmin g
nglewoo
Yourdan Press, 1982, pps. 23-44. g g, g d ¢

[5] inlggte Phillip, A.. The Design and Analysis of Real-Time Systems, IEEE Compu
pps. -83.

. [€] Catberall, Thomas, "Sending Data From the Train to the Digital Component", Ma
New Berlin, Wisconsin, May 1930, pps 1-10.

Tadwoe yFla . e il LI T L As

34 39vd> S3LVIO0NSSY ANIWH T11 BEBZ 9BBZ/ba/SH
Tuesday, May 09, 2006 (2).max

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 6 of 12

A Laboratory Platform to Control a Digital Model Railroad
 Over the Web Using Java Pageclof7

A Laboratory Platform to Control a
Over the Weh Lfsi_g

Roger W. Webster, Ph.D.f‘ Mary A, Klaus
[wg,bster@cs.mj!l_gsv.ed_ln maklaus@cs.millersv.edn

‘LTimothy A. Bish ” Mike Fioriil

Digital Model Railroad
J

*
ava

Department of Computer Science
Millersville University
Millersville, PA USA 17551

Abstract

This paper describes the work-in-progress of a client-server system to control a digital model railroad
over the World Wide Web Using Java. The software engineening objective of this real-time system is to
maintain control of multiple digital locomotives each running on the same track layout while at the same
time allowing users, anywhere in the world, to manually control the operation of the trains using ajava
applet running in a web browser. A video camera is connected to the web server showing the users a
video stream of the actual physical train system. The java client allows the user to: stop, reverse, and
change the speed of any train (by address). Also, the uscr can switch any of (he computer connected
turnouts on the layout. The control software (java server) constantly monitors reed contact sensors to
keep track of each train's location and direction, and is continuously performing collision avoidance
testing. Each digital locomotive and digital turnout switch responds to computer commands that are sent
to its address. The computer system, an Intel Pentium running Windows NT®, runs its own web server
at http://javatrains.millersv.cdw. This laburatory platform requires students to utilize and exercise their
knowledge of mathematics, physics, engineering, real-time programming and computer science.

Introduction

In this railroad layour there are 4 digital turnout switches, two digital locomotives, and fifteen reed
contact sensors to manage and control (see Figure 1). The fifteen reed contact sensors are placed in
appropriate lovations around the track (Fi gure 2). Magnets are attached to each locomotive which trip
reed contact switches which are implanted in the track. This configuration provides an interesting,
expenimental platform for the study of controlling a real-time system using a java client-server
architecture, for undergraduates in Computer Science and Computer Engineering This laboratory
platform requires students to utilize and exercise their knowledge of mathemalics, physics, engineering,
computer science, and real-time programming. A physical model railroad was used because theoretical
modeling and graphics simulations do not always manifest the frustrating and spasmodic problems
endemic in actual real-time systems,
£

This project was funded, in part, by the National Science Foundation under grant numbers DUE-
9350841 and DUE- 9651237, and by the Faculty Grants Committee of Millersville University

Havdware and Equipment

httn /fee millereville adii/caraletne/ma AN oo it .
8@ 3ovd S3LYIONSSY ANIWTA

Tuesday, May 09, 2006 (2).max

111 BE @2 96BZ/pB/50

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 7 of 12

A Laboratory Platform to Control a Digital Model Railroad
 Over the Web Using Java Pagc 2 of 7

The java server and webserver arc run on an Intel Pentium compuler running Windows NT® with 32
MB memory and a | GB Hard Disk drive. The Marklin® digital railroad system is used to interface the
computer to the track as depicted in Figure 2. The Marklin® system'is comprised of &ix interconnected
components: a Central Unit, Computer Interface, Keyboard Turnout Control, Track Detection Module
(TDM), Control 80f, and a Transformer. All Marklin® modules or components plug together to form a
bus architecture berween components. {he Central Unit is the CPU of the Marklin® system. The Central
Unit receives commands from the other modules that control turnouts and locomotives. The locomotives
are digitally encoded with a chipset that is addressable, therefore messy block wiring 1o turn the power
on and off is unnecessary. The Central Unit overlays each command on the electric current thereby
sending a signal 1o the track where il is received by the specific decoder for which it is addressed (for
example, the C82 decoder chip in each locomotive or the K87 turnout decoder for switch tracks). The
588 Track Detection module (TDM) is an encoder which translates the incoming signals from the reed
contact Sensors 1nto a data format that the digital system can then use. The Control 80f module is simply
a manual control knob for setting the speed and direction of any digital locomotive. The K87 Digitat
Turnont cantrol module can digitally switeh up to four tumouts. Multiple K87's can be connected in
series. The K87 will respond to track switch commands from either the Marklin® Keyboard component

or the Computer Interface module.

Intertace to Marklin® Digital Railroad System

The java server sends the low level commands from the computer to the Marklin® Computer Interface
hardwgre via R8232, Methods such and TRAINHALT() were written to initialize and shut down the
Marklin® system. The method TRAINSPEED(train-number, speed) issued the addressable speed
command, thus each train could be separately controlled, TRA.TNSTOP(train—number) stopped the train
train-number, but not the other trains running, TRAINSWITCH(switchnumber curved-or- straight)
would switch the digital turnout to ejther it's straight or curved position, TRAJI:]REVERSE(train-
number) reversed the train. The function call TRAINGET-TDM(tdm1, tdmn2) returns the two byies sent
Dy the Marklin® Track Detection Module. The first byte, tdm1, contains the sensor information for the

htto://cs. millersville adi/msrahetarione ADL: me o ft oot ve o
68 3Jovd S3IVIONSSY ANIWSA 11T

Tuesday, May 09, 2006 (2).max

BE:BZ 9E8BZ/PB/SA

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 8 of 12

A Labaratory Platform to Control a Digital Model Railroad
 Over the Web Using Java Page3 of 7

first 8 sensors on the track. Tdmn2 coulains sensors 9 through 16. A magriet on the train will trip the reed
sensor when it crosses. A bit is on if the sensor has been tripped. The device latches the bit until a
computer command read, which resets it to zero. It is interesting to note that a slow train could trip the
reed sensor twice. Thus a double hit occurs. This happens when the sensor is tripped, read by a computer
read command (inquiry), reset to 0, then read again by the software before the train has completely
bypassed the sensor. This 1s taken care of in the software by masking off the previous reed sensor data.

j": g ke ———1
(Merktin Digital Railroad Inerface

A
RN C o mputer] Turnout Centrzl Cennrold Tt
""‘Emtl(aee]~i contral Yait CRU F E T ot E g netormay

4‘(\\

TPIL = Tragk Ketactimn Modole

i WNR —_

WA ! 2

Figure 2. Track Layout. Reed contacts are numbercd 1 through 15.
Digital turnouts are numbered SW1 through SW6.

Java Client - The User Interface

The java client (see tigure 3) allows the user to manually control the operation of the trains from
anywhere in the world, This java applet allows the user to: Stop, reverse, and change the speed of any
train (l?y address). Also, the user can switch any of the computer connected turnouts on the layout. The
java ghent sends commands to the server to determine the vi ability of the request. Thus, the user is not
‘permitted to make a change that wonld cause 2 erash. If 80, the request is denied by the server.

htn-/rne maillareuilla adi ! SRR Ry S ¥ s Y ”

a1 3dBVWd S31vID0SSY ANIWYA 1T Qe 0
Tuesday, May 09, 2006 (2).max

36BC /P8 /56

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 9 of 12

A Jaboratory Platform to Control a Digital Model Railroad=
 Over the Web Using Java Pagc 4 of 7

Brveo Bretoaigit

T

Peuin 3

Yenin
Epad

¥urmont

Figure 3. Java Client - The User Interface.
Java Server - The Software Controller

The java server is actga_tly three separate tasks all continuously looping and executing their jobs once for
each pass through thety loop. The first task is the server to the client. This process simply takes
commands from the client and passes them on to the next task, the AL A timeout is set up to notify the
c_hent.tk.xat something has gone wrong and ask him to restart if the tasks takc too long to respond. The
simplicity of this task reduces its chanec of failure so lliat the wser can be kept informed if other
problems occur.

httn://me millaresrilla adi/ [P Y B N ” A o

IT 39vd S31VIO0SSY ANIWWH TT1 BEBZ SBBZ/PB/GO
Tuesday, May 09, 2006 (2).max

- Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 10 of 12

A Laboratory Platform to Control a Digital Madel Railroad
 Over the Web Using Java Page 5 of 7

<

Figure 4. Java Server User Interface.

The second task, the Al receives TDM data from the scan task and uses this to keep track of the
positions of each of the trains. If a command sent by the user would result in a collision it modities or
ignores the command and sends this information back to the client so the interface can be updated. The
Al contains the code to detect collisions. When one train approaches anocther train too closely, the Al
either issues a slow down command or a stop(train-address) to the train behind, depending on how
imminent the collision is. The controller does not want to stop a train unless it is imperative to do so. In
imminent situations the AT may issue both a train slow down command to the rear locomotive, and a
train speed up to the front locomotive. If the user issues a command the flip a switch, the AI determines
if it is safe to switch, and if so. issues the command to the Macklin® system.

The scan task is the one that actually talks to the trains. It receives commands from the Al and sends
these out to the trains. All commands are sent as one or two bytes. The first byte contains the command
code and the second (when appropriate) contains additional information such as train speed. When there
are no cumnmands coming in, the scan task continuously asks for TDM data from the trains. This task
also makes sure that only one command is sent between successive TDM calls. The scan task gets TDM
data by calling the method getTDM() which retuins the two bytes sent by the Marklin® Irack Detection
Module. The first byte contains the sensor information for the first 8 sensors on the track. The second
byte contains sensors 9 through 16. The decadin g of the sensor data returned by gotTDM is
accomplished by left shifting the first byte and combining these two bytes into one word. This data is

then sent on to the AL

The Alknows the current direction (forward or backward) of each train, its previous position (which
seusor it last tripped) and the state (straight or curved) or each switch, However, the contact does not
know which train crossed, just that some train (with a magnet) has crossed. Thus, tripping a contact is
not an addressable event Ambiguity can arise due the fact that tripping a contaul is not an addressable
event. The Al task figures out which train it probably is given the monitoring information it is

httn - /oe millaroville advife svrnhasnclna AOL aen b ..

Z1 3vvd S3ILYIDOSSY ANIWEA
Tuesday, May 09, 2006 (2).max

111 BEBZ 9BAZ/rB/5A

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 11 of 12

A Laboratory Platform to Control a Digital Model Railroad
 Over the Web Using Java Page 6 of 7

maintaining. Using this information, it translates the TDM dala into a new position for each train by

looking up information about possible next positions for each train in an array. For example, if a train
was previously at sensor 11 and all switches were straight, it shouldn't be at sensor 8 the next time, A bit
is on if the sensor has been tripped. If the function returns more than two sensors tripped, at least one of

the trains has crossed more than one sensor since the last update or some hardware

All commands are sent as one byte The upper nibble contains command code and the lower nibble
contains additional information, when required, such as isi the case of train speed adjustment for
example. The server task is responsible for all control of the system. This task accepts all user
commands from the java client and determines if current conditions an the train layout will allow the
command to be executed safely (without causing a collision or derailment). If so, the command is
executed otherwise the command is blocked from the Marklin® system. The server task keeps track of
vital information for each train such as: location, speed, direction, and current zone or sector.

Each time a scnsor is tripped, the sensor value is used to index a lookup table which contains the
previous value for each sensor on the track layout. In this manner it is possible to monitor the trains
without addressable track detection information. The reed contact will signal the fact that a train (a
magnet) has crossed the track. However, the contact does not know which train crossed, just that some
train (with 2 magnet) has crossed. Thus, tripping a contact is not an addressable event. Ambiguity can
arise due the fact that tripping a contract is not an addressable event. The java server control software
figures out which train it probably is given the monitoring information it is maintaining.

For example, suppose the current sensor read is 8 and the direction is 0. The previous sensor would be
14. This value is compared to the location of each train in the data structure, If a match is found the
current sensor value is stored in the location field for that train. If no match is found the system 1ssues a
TRAINHALT indicating a lost train, and the server shuts down, In this manner the server always knows
where each uain is at any ime and is never allowed to lag behind.

The java server contains the code to detect collisions, When One train approaches another train too
closely, the server either issues a slow down command or a TRAINSTOP(train-address) to the train
behind depending on how imminent the collision is The controller does not want to stop & train unless it
1S imperative to do so. In imminent situations the server may issue both a train slow down command to
the rear locomotive, and a train speed up to the front locomotive. Upon each train arriving at a switch
the serven determines if it is safe to switch, and if 5o, issues the command to the Marklin® system.

Concluasion

Tl_lis paper has described the work-in-progress of a java client-server wontroller for a digital model
railroad. The control software does accomplish its objective of maintaining control of muitiple digital
locomotives each running on the same track layout while at the same time allowing users around the
world to manually control the operation of the traing using a java applet running in a web browser. A
video camera is connected to the web server showing the users a video stream of the train system. The
Java cliont allows the user to: stop, reverse, and change the speed of any train (by address). Also, the
user can switch any of the computer connected turnouts on the layout. The control software constantly
monitors reed contact sensors to keep track of cach train's location and direction, and is continuously
performing collision aveidance testing,

The Project was initiated to provide an interesting, experimental platform for the study of controlling a
I_‘ealutlme system over the worlc} wide web with a java client-server architecture This laboratory
blatform requires students to utilize and exercise their knowledge of mathematics, physics, engineering,

httn //ee miTTaresi 1o adn /e sernbanbas/an ANL: oo 11n .0 -
ET 3ovd S3LYIDNSSY ANIWTA T11

Tuesday, May 09, 2006 (2).max

BEBZ 90BZ/vB/GB

Case 3:06-cv-01905-JSW Document 13 Filed 05/12/2006 Page 12 of 12

A Laboratory Platform to Control a Digital Model Railroad
 Over the Web T Tsing Java Page 7 of 7

resl-time programming and computer science. Further information and source code can be found on our
web site at http://cs.millersv_edu/javatrains/.

Acknowledgements
Thts project was funded, in part, by the National Science Foundation under grant numbers DUE-

9350841 and DUE-9651237, and by the Faculty Grants Committee of Millersville University. Many
thanks go to Mrs. Bonnic Waik, fui sdministrative assistance. Special thanks go 10 Robert Sauders

setting up the DNS entry javatrains millersv.edu.

References

o Catherall, Thomas, "2-Rail Digital DC", Marklin® Digital SIG Newsletter, Vol. 2, No. 1, New
Berlin, Wisconsin, January 1990, pps 1-8.

« Catherall, Thomas, "Sending Data From the Train to the Digital Component”, Marklin® Digital
SIG Newsletter, Vol. 2 No. 3, New Betlin, Wisconsin, May 1990, pps 1-10.

= Cassidy, Luke, "Industrial Strength Java", New Riders Press, Indianapolis, IN., 1997.

» Flanagan, David, "Java 1.1 in a Nutshell", Second Edition, OReilly Press, Cambridge,
Massachusetts, 1997.

« Flanagan, David, "Java 1.1 Examples", O'Reilly Press, Cambridge, Massachusetts, 1997.

e (reary, David M, "Graphic Java 1.1 - Mastering the AWT", Second Edition, Sun Microsystems
Press, Mountain View, CA, 1997

¢ McCormick, John W., A Model Railroad for Ada and Software Engineering", Communications
of the ACM, November 1992, Vol. 35, No. 11, pp. 68-70.

Department of Computer Science
Millersville University

hﬂ'n‘//{‘,ﬂ mi”ﬁf‘ﬂ\!inﬂ adn/ctiahctar/Ac ANE mvvaimeendeat e . 10t

p1 39vd SIIWIOASSY ANIWTA T1T
Tuesday, May 09, 2006 (2).max

BEBZ 90BBZ/vB/SEB

